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DETERMINATION OF VISCOELASTIC MODEL CONSTANTS FROM 
DYNAMIC MECHANICAL PROPERTIES OF LINEAR VISCOELASTIC MATERIALS 

ABSTRACT 

A semi-analytical method of determining the generalized Voigt model which 

represents the dynamic mechanical properties of a linear viscoelastic material 

over a range of frequencies of three decades is presented. This model 

representation is shown to be equivalent to the differential operator formulation 

of the linear viscoelastic stress-strain law. The method is applied to complex 

creep compliance data for N.B.S.polyisobutylene at 22 different temperatures. 

In general, the compliances calculated from the models differ from the 

experimental data by less than 5%. 
A summary of spring-dashpot model theory is presented in Appendix A. The 

equivalence of the differential operator stress-strain relation and the 

generalized Voigt model is demonstrated in Appendix B. 
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INTRODUCTION 

A number of commonly used materials such as plastics, rubbers, fibers, 

etc. exhibit viscoelastic properties such as creep and relaxation. A case 

in point is the solid propellant rocket fuel where elastic analyses are 

inadequate for relatively long time conditions, such as slump during storage, 

and for extremely short-time dynamic conditions, such as impact and sudden 

acceleration. Problems such as these are currently being solved using techniques 

of the theory of linear viscoelasticity. (l), (2 )* However, the application of these 

techniques is dependent upon the formulation of the linear viscoelastic stress

strain laws from experimental data in such a manner as to represent the mechanical 

properties of the actual material. 

Presented in this report is a semi-analytical method of determining the 

generalized Voigt model which will accurately represent the dynamic mechanical 

properties·of a linear viscoelastic substance over a range of frequencies of three 

decades.()) This model representation is equivalent to the differential operator 

formulation Jf the linear viscoelastic stress-strain laws. 

The method empJoyed is based upon the analogy between linear electrical 

networks and spring-dashpot mechanical systems. (4), (5) A transfer function 

is constructed to represent the generalized Voigt model. The asymptotic 

approximation method originally devised by Baum is used in conjunction with 

a least squares computer program to determine the viscoelastic model 

constants from dynamic creep compliance data. This method can be applied 

to viscoelastic materials exhibiting a wide range of dynamic mechanical 

behavior and represents a significant improvement over previous model fitting 

techniques.(?) 

LINEAR ISOTHERMAL VISCOELASTIC STRESS-STRAIN RELATIONS 

In the theory of linear isothermal viscoelasticity, a viscoelastic solid 

is specified by the existence of a relation connecting stress, cr, and strain, E: 

(1) 

* Superscripts indicate re~erences at the end of this paper. 
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where p and Q are linear differential operators with respect to time. Thus, 

d d2 dr 
p Po + pl dt + p2 ..::1.&-2 + ... + p -=-r .... r 

U\.1 U"(. 

(2) 

Q 
d d2 dm 

= CLt + q, dt +~ ~ + ... + Q 
v ..L c. dtc. -m dtm 

{~\ ,,..,, 

The p's and q's are constants which represent the mechanical properties 

of the material at a given temperature. These constants cannot be measured 

directly, but must be calculated from experimental data in which both the 

stress and strain are known as functions of time. Although the stress-strain, 

a - e, relations for a linearly viscoelastic material may also be represented 

by hereditary integrals,(l), (2), ( 5) it has been foQ~d that the determination 

of the stresses in a viscoelastic body subjected to transient loading is 

considerably simplified if Eqs. (1), (2) and (3) are used to specify the 

material behavior. 

MODEL REPRESENTATION 

The expression P [a] Q [€] is often visualized as a mathematical 

representation of a mechanical model, consisting of a network of springs and 

dashpots. A summary of the theory of spring-dashpot models is presented in 

Appendix A. The model used to describe the mech&iical pr-operties of materials 

in this report is the generalized Voigt model. 

E1 E 2 En 

--AAr, J\.1\r-, ... ~-\."'1-~~ ~LJ-J- LJLJ 
Eo "lo 3)-J .!J ~ 

"'t "12 "'n 
FiG. i . THE GENERALIZED VOIGT 

MODEL 
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This w~del exhibits both inst~~taneous elasticity and long~term creep and 

is mathematically better suited to describe ex~erimental dynamic creep data 
\ 

than is the generalized Maxwell model. The operational form of the stress-

strain, cr -- € relation, for this model is then given by 

€(t) 
r 

a( t) l 1 
~ + n" :1~ + 

[.·u u"G 

~. 'I ~E. +ln. ~ a(t) 
~=l. ~ 'l. a:t-' 

CO¥..PLEX CHEEP CO~..PLIA ... 'iCE 

(4) 

The steady state response of this model to a sinusoidal stress is given 

J*(m) = ~ = J' (m) - ict' (m) 
(J 

:i.wt where the time dependence of both € and a is of the form e 

(5) 

This ratio, J*, 

is known as the complex compliance with J' and J" called the storage and loss 

compliances respectively. The non-zero imaginary function, J"(m), implies a 

phase difference between the oscillations of stress and strain. Both J 1 and J" are 

functions of m which can be measured experimentally over the frequency range of 

interest. Substitution of steady state sinusoidal variation in Eq. (4), 
which means replacement of the operator d~ with im, and comparing with Eq. (5) 

yields 

J*(m) 

and therefore 

n 
l l - +--.-· + 

Eo 1lo1.w 
)' =---1-=-
L.....l E j t iwi"i j 
i-1 

tJ - ...... 

1 El 
+ --=2--~2~2 + 

EO E_ + n_ m 

l 
==--+ 

~ 
0 

-l. ··..L -

9 

( 6) 
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(8) 

1 
= -- + 

The complex compliance may also be written as the ratio of two polynomials. 

In Eqs. (2) and (3), let r ~ m; this corresponds to a viscoelastic material 

exhibiting instantaneous elasticity. Then choose pA = 1 and q_ = 0: this allows v \.), , 

for the presence of an isolated dashpot which permits long term viscous flow. 

U;Jt 
Then if C1 e 

€ = J* (ro) eirut 

and from (2) and (3) we have 

....... r., r... . '-t",.)2 
r L o J = L .L + ~l UD + P2 t ..LW + 

and 

but 

Therefore 

1 + pltoo + p2(iru)2 + .•• + pm(LD)m 
J*(LD) = -----2 _____ _:....... __ 

q1iw + ~(iro) ~ .•. + ~(Lm)m 

Now let ia> = s • Then 

(9) 

(10) 

,., ., \ 

\.l..l.J 

(l2) 

,_- ... 
l.l,:)J 

Cauer, (7).Alfrey, Gross and others have sho~~ the analogy between electrical 

networks a~d mechanical models. From this analogy, H(s) is defined as the 

system transfer function, and exhibits the same properties as the transfer 

function for an RC network. The equivalence. of the differential operator 

a - € representation &~d the generalized Voigt model is presented in 

10 



Appendix B along with a discussion of the properties of the system transfer 

function H(s). Another convenient form of the transfer function H(s) can 

be derived by letting Al' A2, A
3

, .•• Am-l be the roots of the equation 

2 
ql + ~s + qhs 

] 

and l A++i na 
Ill' 

II ..... ;; ....,'- v v..a... ...... b 
~-"2' 

1 + 

+ 

II be 
,....ill 

+ 

m-1 
+ ~s 

the roots 

m + p s 
m 

0 

of the PCll 1R.t. i on _"-:~. ______ 

0 

(14) 

(15) 

The properties of H(s), as found in Appendix B, require that the ~i and Ai 

be negative real constants. Then H(s) may be written in the form 

.... ~ ,_ \ 
tJ"~~) 

where k is a positive real constant. This form of H(s) is useful in 

calculating p(s) and q(s) once the A; and ~; have been determined • 
..I.. ..I.. 

DETERMINATION OF MODEL CONSTANTS FROM 
DYNAMIC CREEP COMPLIANCE DATA 

Having shown that the generalized Voigt model is equivalent to the 

differential operator description of viscoelastic material behavior, the 

CT\T\'Y'f"\nY.;c+.::. "1Tcl11A<:! "f' n Anrl R Al"P 'Y'Pf11,;1"Pri +.n f'i+. PVY'\Pl"im~=>n+.s:~l ~F!.t:R.. l"fl ..... "h .... p 
~J::-'1;-'..&.'-'J:-'..l.•""""'v'-"" y'"""~\..4'-'"-~ '-',J.... ljj _.... ....... "'-A. ...._.j _..__ .a.."'"""'':L""" ..... *-'""- ...,_ ..&...a..v -••J::''-" ........... &4.._...,,.....,......,......, ---- _ 

dynamic creep compliance data consists of values of Ji and J:: at different 

values of ill. From the relations ; 

and 
. -l Jll 

r~ tan -
'I" JT 

I,/'\ 
~.1.0) 

(17) 

the values of l J*l, the absolute value of the complex compliance, and ¢, the 

phase angle, are calculated. 
/()\ 

The graphical, semi-analytical method reported by Welch~ \OJ and 

originally applied to circuit synthesis is then used to determine the 

approximate locatio~ of the poles of the transfer function, H(s). This 

method consists of (1) construction of a graph of ¢ versus log ill and (2) 

construction of a graph of log IJ*I vs log ro from the experimental data. 
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Careful study of the phase angle plot, along with some knowledge of the effect 

of various spacings of poles ~~d zeros on the phase angle as a function of 
In\ 

frequency, results in an initial placement of the poles and zeros. \/J The 

possible location of these poles and zeros is then verified 9n the graph I J* I 
vs ro. These poles are located at s =A.. in the complex s plane. These values of 

J 
A. j are then substituted into Eqs. (7) and (8) along with the relation 

A.j - Ej/nj (Appendix B) to yield 

1 

J • (ro) 
...... 

=-
li'! 
~o 

1 
J" (m) =-- + n,..ru ·u 

Now let El = A; 1 
= B; -

0 flo 

Then (15) becomes 

J' (ru) = A -
'\ 

"'1 

J'' (ru) 

A,/f}, 
.L '.L A2/TJ2 

~ '? I) 0 - ....... 
A - + (.).) ...... A ._ '-+rn l 2 

m/rt1 rn/l)IJ 
c. 

+ ? + ....... 2 2 2 
>..1 + (.).) "-2 + (.).)-

l 
cj 

T}j 

2 2 - . . . . . . . .. 
+w 

+ . • • • • • • + 

A C nn 
2 2 

A.n + ru 

o£ 
n 

2 2 
"-n + rn 

"- /1) n n - X X c:. ~ 
A. + ill n 

rn/n . •n 
+ 0 I") 

A. '- c. 
+ill 

n 

Eqs. (21) are then solved for the values of A, B, and Cj using experimental 

data for J' and J" at from 8 to 16 different values of rn. The solution of 

this overdetermined system is obtained using a least squares program on the 

BRL ORDVAC digital compute~. This program applies Legendre's principle, as 

outlined in Reference 10; to solve the normal equation~s derived from the 

(18) 

(19) 

(20) 

(21) 

overdetermined system of linear equations. The computer uses the values of 

~j and calculates positive A, B, and Cj along with the values of J' and~' at 

the differ~t values of w for comparison with the inp~t data. Since the relative 

experimental error is gt:narally constant, the least squares program minimizes 

t ' ' (11)* ne re~ative error in the fitting procedure. 

This procedure has proven more effective than the method employed in Reference 11. 
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Study of these results provides indications as to possible motion of 

the poles and zeros of H(s) to improve the data fit. For example, if the 

first choice of the poles Aj is in error, the constants Cj, as calculated 

by least squares, are negative. These negative Cj do not correspond to a 

spring dashpot model. Possible error in only one Aj = Ak results in only 

Ck being negative, thus providing a clue to the source of the trouble. Once 

the A, B, and Cj are known, the values of Ej and.~j can be determined from 

Eqs. (18) and (20). The problem of generating p(s) and q(s) from the Ej and 

~·is most easily approached through the equivalence of two forms of H(s). 
J 

Let iru = s in Eq. (6) and substitute Eq. (20) to get 

J*{s) 

n rt 

B \ vj 
= H ( s) = A + s + L-s------:A;__. 

j=l J 

(22} 

Equating Eqs. (22) and (16), we find 

1 
k =A=-

Eo 

and the II are the roots of the equation, '""i - • 

n C 
A + ~ + "'\' j A. = 0. 

s ~ s- . 
j=l J 

(23) 

Solution of Eq. (23) using the BRL ORDVAC digital computer by means of successive 

subdivision of the intervals between A. and~~-~' provides the values of the u~· J J-1-J.- . ~ 

APPLICATION OF PROCEDURE TO N.B.S. FOLYISOBUTYLENE 

Published data for N.B.S. polyisobutylene, (l2 ) Table No. I, are used to 

provide an example of the application of this procedure. The data for 22 

different temperatures are fitted, since this represents a wide range of 

viscoelastic behavior. The results of these calculations are tabulated in 

Tables No. II and No. III and are illustrated in Figures 10 thru 18. Figures 2 

thru 9 show the graphs of ¢ vs log ill and l J* I vs log ru for four characteristic 
0 80 0 0 rl. . temperatures: -40 •. 4 c, -29. C, -9.9 c, and +50.0 C. These 'P vs log ru graphs 

indicate considerably different viscoelastic behavior, and therefore the 

location of the Aj' as well as their spacing, requires some knowledge of pole 

and zero interaction. 

13 



TABLE I. SUMMARY OF DYNAMIC MECHANICAL DATA ON POLYISOBUTYLENE * 
TOC Frequeo~ CJll 30 40 45 60 72 110 100 140 200 210 2110 400 600 800 1000 1400 1500 2000 2800 3000 4000 4200 1100 

-44.6 J' 000 ... ... ... . .. ... 0.151 0.145 0.136 0.123 0.132 0.118 0.111 0.108 O.ott~ J" em2/dyne(XI0"'1) ... . .. 0.~ 1.244 0.200 0.166 0.142 0.!!8 0.09-55 0.!)1!3! 0.0597 0.0551 OJNiOe 0.0388 0.0!09 
-40.4 ~~ emt/dyne(X:I0"'1l 

... . .. ... ... . .. 0.308 CU64 0.212 0.1811 0.163 0.167 0.148 0.137 0.128 0.112 ... 0.823 0.617 Uto 0.411 0.336 0..284 0.230 0.177 0.151 0.129 0.107 0.01121 0.0651 0.0801 
-34.7 J' 000 ... ... O.M" 0.702 0.571 0.4;"8 0.387 0.308 0.254 0.248 0.216 0.188 0.165 0.138 J" em2/dyne(XI0"'1) 2.20 1.59 1.17 0.158 O.R05 0.110 0.566 0.467 0.367 0.304 0.268 0.214 0.182 0.130 0.107 
-29.8 J' ... ... ... 1.41 1.19 0.997 o.w o.tl56 0.512 0.440 0.398 0.368 0.278 0.220 ... 0.153 J" cm'/dyne(X11t1) 3.96 2.82 2.07 1.";0 1.43 1.13 1.02 0.796 0.639 0.553 0.486 0.415 0.336 0.248 o.m 0.218 
-~.0 J' 000 ... %.51 %.17 1.81 1.48 l.U 1.01 O.IW 0.703 0.625 0.526 0.422 0.328 0.302 J" cm'/dyne(X 10"'1) 6.79 4.911 3.66 %.97 2.39 1.110 1.58 1.26 1.02 0.880 0.777 0.622 0.558 0.421 0.350 
-19.9 J' U9 5.23 3.93 U2 U3 us 1.1!8 1.52 1.24 1.(13 0.947 0.792 0.646 0.528 0.388 JH cm'/dyne(XIIt1) 11.8 8.91 U6 .UII 4.20 3.14 2.63 2.08 1.63 1.37 1.23 0.1177 0.8113 0.687 0.634 
-14.8 J' 11.5 !!.96 7.48 6.17 5.55 4.51 3.64 2.99 2.38 1.85 ... 1.47 . .. 0.949 0.752 J" cm'/dyne(X10"'1) 20.1 14.8 12.2 10.2 1\.76 6.!13 5.47 4.42 3.49 2.65 ... 1.111 . .. 1.40 1.10 
- 11.9 }~ emt/dyne(XI0"'1) 19.7 14.8 12.0 10.0 ltiO • 7.06 5.87 4.71 3.55 2.78 2.43 2.18 U2 1.25 1.08 1.05 

31.1 22.$ 18.8 15.11 13.7 11.0 11.54 6.111 5.55 4.19 3.44 2.94 2.2P 2.19 1.58 1.64 
- 5.0 J' 29.8 23.0 19.2 16.2 13.7 11.0 &.71 6.89 5.35 Ulll 3.40 2.110 ... 1.61 1.42 J" cm'/dyne(XI0"'1) 40.4 32.7 27.9 23.2 20.4 JU 12.9 10.4 11.39 6.21 5.15 4.43 ... 3.02 2.08 
- 0.10 J' 50.4 37.2 30.1 25.0 21.2 11.8 13.1 10.4 7.88 5.77 4.98 4.37 3..24 J" em2/dyne(X10"'1) 55.9 45.5 39.0 33.6 2!1.2 24.0 11.2 15.6 12.4 9.04 7.72 U5 5.53 

u J' 75.7 56.3 46.2 37.8 32.1 21.0 20.1 IU 12.2 8.87 7.52 6.12 4.67 J" cm'/dyne(X10"'1) 72.8 61.2 53.5 46.4 40.9 33.1 %7.5 23.0 17.9 1U 11.4 10.3 8.13 
"" ~;, cm'/dyne(XI0"'1) iOO .. 80.2 66.2 5i.i 47.2 37.5 D.G Zi.i i6.8 i2.7 iO.t v.oz i.i8 5.13 3.84 U6 •• o 

1--' 86.8 76.1 67.9 60.6 53.11- 46.0 37.1 31.8 25.4 20.0 17.2 15.5 10.6 10.2 7.33 5.88 
-+:-- 14.8 ~~ emt/dyne(XI0"'1) 140. 110. 12.7 77.2 6U 53.1 42.1 33.4 24.11 17.6 15.7 13.2 U2 ... 7.72 6.(18 6.00 

96.4 88.8 81.9 74.8 71.6 61.3 49.6 41.0 33.0 26.3 23.6 20.9 15.4 ... 14.3 10.9 8.21 
19.8 ~~ cml/d~(Xl0"'1) 1i6. 144. 124. 101. 119.5 71.0 57.1 46.11 35.7 26.1 21.8 18.8 . .. 10.9 8.H 7.04 

99.4 96.8 13.2 87.4 M4.8 75.1 14.8 51.1 44.3 35.8 29.8 27.2 ... 11.4 14.8 11.7 
25.0 ~~ cml/dyne(Xllt1) 204. 184. 182. 15e. J3i. 119. 18.4 79.0 15..3 51.2 3U 32.1 27.1 20.7 16.7 12.1 8.114 

102 93.6 107. tllO 97.8 IU 88.1 77.8 65.0 56.4 46.1 41.0 38.4 30.1 28.3 !0.5 IU 
30.2 J' ... liS. 154. 1211. 1 •. 10.0 70.3 U.R 46.2 38.4 . .. 2U 111.1 J" cmt/dyne(Xl0"'1) ... ltD. 101.. 18.6 84.2 79.1 70.8 61.2 51.4 47.6 ... 35.6 26.8 
au ~: cm'/dyne(X10"'1) 

... 227. JIM. 18'1. 118.. 142. 111. ft. I 73.7 511.7 51.9 44~ . .. 26.3 ... 102. 19.0 10Z. 11.1 17.8 10.7 81.2 72.1 61.0 58.3 :t.: . .. 31.4 
40.0 J' 271. 252. 231. 217. Ito. 117. 146. 117. 95..0 78.$ 70.2 J" em2/dyne(X10"'1) 76.7 89.0 14.0 lfl3 13.0 14.1 97.4 IU 81.1 73.7 61.2 52.7 
-.U ~~ cm'/dyne(XI0"'1) 307. 288. ii'ii. iii. :151. m. ltv. 177. 141. 123. 113. 8U 

55.7 64.2 79.2 RU 11.2 ft. I tU 101. 13.0 90.3 78.1 74.7 
511.8 ~~ emt/dyne(X 101) 294. 295. 212. 2112.. -- 2110. m. 221. 1811. 

40.2 51.0 53.5 5•u 61.1 71.0 81.1 11.8 116.3 
80.0 ~~ em2/dyne(X10"1) 310. 311. 315. ... -- 2110. 282. m . 257. 

32.3 34.1 36.8 ... 40.2 G..l 10.0 60.J 71.3 
9U ~: em2/dyae(Xl0"'1) 302. ... 311.. 314. 110. JOS. 213 • 215. 285. 

23.4 ... 28.J 21.2 31.1 31.7 D.l 40.2 47.1 

*REF. 12 - TABLE 2 
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FIG. 8- PHASE ANGLE cp FOR POLYISOBUTYLENE 

AT ( T = 50.0 ° C) 
vs. w 
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On the graphs of log J* vs log ill are shown the straight-line 

approximations made by the method of asymptotic slopes, (B), (9) using the 

calculated poles and zeros. do not completely 

follow the calculated curve in some cases; this effect results from the 

interaction of errors. The approximation error at an isolated pair of critical 
values .. '\ ..; "" ,..,..; ... ron h-.r(8) 

~i' "'i ..L.i:l o..L.VI....J...L VJ 

2 
.r.: 1 ~. 

log vc - 2 log (1 + l 2) (24) 
1-li 

~. 

It a pair of critical values in which the ratio ~ is fairly large is followed 
1-Li 

by a pair in which it is relatively smaller, the two errors may interact. However, 

such fluctuations are of little importance, since in most cases a knowledge of 

the phase angle will permit the approximation to ·be made with sufficient accuracy 

for the use of the computer program mentioned previously. In 90% of the trials 

made in fitting the polyisobutylene data, the first choice of the ~j provided a 

fair fit for the experimental data. These models generally were within ±5i in 

the middle range of data with some having errors of ~10% at the extremes. Slight 

adjustment of the ~j resulted in models which fit the data at 92% of the data 

points with an accuracy of ±5% and with only one data point deviating by more than 

10~. 

Of significant importance i~ the f~ct that once the ~j have been determined 

for a particular set of experimental data, introduction of new data which 

are more or less consistent with the old does not require selection of new ~j' 

but only requires the use of the computer program to recalculate the other model 

parameters. As an example, recent data on polyisobutylene at T = 25°C(l3) which 

differ from the Fitzgerald data by approximately 10~ were fitted using the same 

Aj• Then by taking the geometric mean of the two sets of model constants, the 

model which best fits all.the experimental data was determined and the resultant 

values of· J 1 and~~ are displayed in Figures (19) and (20). 

21 



,...... 
(b 

•o 
1\:J X 
!\) -

w 
z 
>-
0 

' C\1 
::E 
0 

.. ..., 

FIG. 10- SHEAR COMPLIANCE J' FOR POLYISOBUTYLENE 
AT INDICATED TEMPERATURES 

vs. w 
to.o~ L r ' I - COMPUTED CURVE 

x X FI!ZGERA~D- GRAN,DINE- FERR'f DATA 

5.o I I ~::----r----t----+----+---f-----+----+--~ 

1.0 

0.5 

)l "' -t~~t= -19.f°C -l t 
I 

0.2 

w, RADIANS/SEC 



f\) 
\.)J 

FIG. II - SHEAR COMPLIANCE J • FOR POLY ISOBUTYLENE 
AT INDICATED TEMPERATURES 

vs. w 
IOO.O~ ....l I I _I MUDII.T~n ,.,L~ I I I 

- "l I I - vVIYir U I L..LI vUI' Y L.. ' I 

X FITZGERALD-GRANDINE- FERRY DATA 

5o.o--•--

'-x~ [
"x .... I 

X .._I '-. . . . . . 

~ 20.o~x~'x}x~x _I I I I I I 

~ In J xl 'x'x,J'x~t, I I I I I 
w •v.v E "x "'x ~ ~ x I . . . 
z l: 'x '-l.~x '-x ~ ~ x ·x, "x ~,l"x"-. I I · · 

~ 5
.
0 ~ I I 'xtv ~f:"x, i'x, 1 + 4

.
90 ,c I I 

1- ~'-xJ .... , ~ '><I - o.1o · - .. ..., 

I l'x..... ~""' . . . 
2

.

0 
I I I I I 'xi'::'*'x 1-5.0 I I 

I.Ol I I I I I ~~9·~ I I 
0.05 ~ 1 I I 1 .. I I 1 1 I I ~~ .. I 1 ~ r 4.: I 1 I , I 1 

100 200 500 1000 2000 5000 
w, RADIANS/SEC 

10,000 20,000 50,000 100,000 



-.:J 1\1 1 11 I IAI "\ ' n .... """'"' 'Z ,.,..., • .a. 

·I 
C: I+ 



-CJ) 

'o 
Jl( -
w 

f\) z V1 

~ 
N' 

:E 
u .. . 
._ 
• .I 

FIG. 13 -SHEAR COMPLIANCE J' FOR POLYISOBUTYLENE 
AT INDICATED TEMPERATURES 

vs. w 
IOOO.Or-----~------~----~----~------~----~----~---------------

~ I I I - COMPUTED CURVE I I 
~00 0 

= _I X FITZGIERALD -G~ANDINE ~ FERRY • D~TA 

---·-t x==~-x ~ r ·1 I I I I 
~-::q:::~~ I ~~-~0 c I I 

200.0 ! I I 

50.0 
~ ~I 40.0 

'-1 BY FACTOR OF iO. 
I 

~ 7f:" REDUCED 

1- I X ~~x-f_x ~I -><-)( -- -* I I I I ' -- ~-
20.0 I I I I I I I t I ,----·¥ ' . . I I 1111 I I I I I I I I I 

1nn ·-- """ ~vv 
?nn --- 1nnn 

IVVV 
~r'\1'"\r'\ c..vvv 1::: n nn I - ----..JVVV IV,VVU 

w, RADIANS I SEC 
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SUMMARY AND CONCLUSIONS 

The results show that the combination of the semi-analytical and least 

squares computer program techniques readily produces models that fit 

experimental data over a 3 decade range of frequency. The models generated 

by this method can describe a wide range of viscoelastic behavior with a 

nominal accuracy of 25%. The application of this method, however, is limited 

to materials that behave in such a manner as to have f J*(ru) I a monotonically 

decreasing function of ru whose slope is always greater than minus one when 

plotted on a log-log graphe If the material does not ~1ite meet this 

criterion, as in polyisobutylene at T = -44.6°C, +80.0°C, and +99-9°C, then 

the input data to the computer program must be adjusted to meet this requirement. 

Otherwise, the least squares program will yield negative Cj in attempting to 

fit the data. After making the necessary adjustments, the resultant model will 

still closely approximate the material behavior. 

As more and more experimental data become available, the models generated 

by this method can easily be extended to fit a wider range of frequencies. 

Since these models describe the physical behavior of viscoelastic materials 

with an accuracy that is of the order of experimental errors, they can be 

used to formulate the stress-strain laws necessary to the solution of 

analytical problems. Laboratory experiments can then be conducted using the 

actual materials, and a comparison of analytical results with experimental 

results can then be made. 
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APPENDIX A 

SUMMARY OF SPRING-DA.SHFOT MODEL THEDRY 

Combinations of spring and dashpot elements which form the spring

daahpot models, have been found to provide a convenient means for constructing 

a differential operator in order to approximate observed viscoelastic behavior. 

The basic elements of these models, as well as the two basic combinations of 

these elements are shown in Figure 1. 

t ~ 
I 

. ~. 
·l:j=l 

I 
~ 
l I 

i 
(a) (b) '" \ \VI 

11'1 \ 
\'-~I 

FIG. I. Sl~w1PLE VISCOELASTIC 
ELEMENTS 

The SIU1 ing (Fig. l.a) represents the elastic response of the .aterial, and 

if a and € represent the stress and strain, then 

,, ' , \ 

artJ = E€~ t) 

where E is a constant called the modulus of the spring. 

The dashpot, consisting of a piston, cylinder, and Newtonian fluid, 

represents the viscous flow of the material. The stress-strain relation is 

a(t) = 11 ~~ 

(1) 

(2) 

where ~ is a constant representing the viscosity of the fluid in the dashpot. 

These two elements may be connected in two ways: (1) in aeries (Fig. l.c) 

known as t.he Ma.~ell !t'..odel; and (2) in parallel (Fig. l.d) knowil as the Voigt 

or Kelvin model. 

The stress-strain relation for the Maxwell model is 

(3) 
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and for the Voigt model is 

de: 
a(t) = Ee:{t) + ~ dt {4) 

Comparison of the response of the Maxwell model and the Voigt model with 

actual materials has shown that models consisting of more elements are required 

to accurately describe the mech~~ical beP~vior of viscoelastic materials over a 

signifiCtUlt range of frequencies. 

GENERALIZED M.A.JCWELL MODEL 

This model is an extension of the simple Maxwell model which can be used to 

~escribe a viscoelastic material. 

l 1 ~ El I j. E2 • •. 

~Eft t=J 'nft 1 ..L? )> -v · J ·· IV ..L. ~ 

l I J='"~i T "12 

I 
FIG. 2. THE GENERALIZED MAXWFLL 

MODEL 

The stress-strain relations derived from Figure 2 are given by 

€ = EE_ = € = €F._ + € n_ n -u ··o -1 'li 

for i 1, 2, 3, .•• n 

a aE + a + al + a2 + ... + a 
0 ~0 n 

tT - Ti' c .... E """o ..... 
0 

d€ ( 5) 
a = ~(\ :u:-

11o v u.v 

d€ [ 1 d 1] 
dt = E1 dt + ~l 01 
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. . . . . . . . . . . 
d€ = r _2: ~ + .2:]- a 
dt IE dt ~ n 

L..n n 

Combination of these e~uations yields the operational form: 

(6) 

GENERALIZED VOIGT MODEL 

This model is an extension of the simple Voigt model, and is the model 

used to describe the mechanical properties of the materials considered in 

this report. This model exhibits both instantaneous elasticity and lon~ term 

Ea E2 t.n 

A A i1 1"'1 1"'1 l""l 
_..V"1M ... II - r-···· - r-

Eo 'TJo L..-.jJ--1 ~ L..jJ--1 
'i1 'i2 'in 

FIG. 3. THE GENERALIZED VOIGT 
MODEL 

creep and is mathematically better suited to describe experimental dynamdc 

creep data than is the generalized Maxwell model. 

Tt1e stress-strain relations derived from Fig. 3 are given by: 

a = E0eE 
0 

de n .... 
a = ~o T 

de:1 . 
a = n_ + E e 

'J. dt -1~1 
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d€ 
n 

a = E € + ~ dt n n n 

€ = € + € + €1 + €2 + ••. 
€0 ~0 

Combination of Eqs. {7) yields, 

r _!L 

€ ( t) = a~ t) + l 1 d + L 
0 

L. llo dt i=l Ei 
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iliPPENDIX B 

EQtJIVAWICE OF DIFFEHENTIAL OPEPATOR a ... € RElATION 
J\JID TifF. GF.lfRR_AT.T7.ED VOIGT MODEL 

~he use of the generalized Voigt model to approximate viscoelastic 

ber~vior is based upon the equivalence of the model's resultant differential 

operator with the relation 

(1) 

The differential operator form, for the generalized Voigt model, as found in 

Appendix A, is given by 

€ (t) ' - , 
a(t) 
--- + E. 

0 

r-1_+~ 1 l· I- } ·--------~d- a(t). 
ln'"' .:1~ ~E_. + n_. u"'+ _{ - ·u uv l=.L 1 ·1 v 

(2) 

For the case of steady state sinusoidal stresses and strains, we have found 

that for the model 
...n.... 

.T*fim) _1:_.._1_4-\' - ,_, 
Eo Tloim 'GE 

. j=l j 

letting j iro 

n 

J*(s) 
1 1 ~E, =- +-- + Eo llos 

j=l u 

1 
+ ic..on j 

1 
+ fl~S 

c) 

(7., \. 
\./f 

(4) 

We have also shown that for steady state sinusoidal stresses and strains, the 
_-~;~ 

differential operator, a - e, viscoelastic relatioti yields 

J*(im) 

'1\T,... .... , ...... .~ ... = s. m1...--... ,.vw .J.Ciil .I.W -.1.-.U~U 

J*(s) = 

2 
l + P .. iro + Pn(im) 

.L -c.· . 
+ ••• + p(iru)m -m· . 

2 
1 n(A) + pls + p2s + ... + 

H(s) = = 2 
s Pm 

m ~(;), 
qls + qs s + + ~s 

where H{ s) is defined as t~ .. s~stee trw..sfer fu..Ylction. 

m 

To show the equivalence .of Eqs. (6) and (4), let ~1 , ~2 , ~3 , .•• ~m-l 

be roots of the equation 
;2 

q1 + ClnS + q,.& + • • • ... -c:::: -:;. 
m-1 

+ ~s = 0 

.J.L/ .,, 

(5) 

(6) 

{7) 
' ,, I 



The roots of this equation must be distinct, since we are considering 

only non-degenerate models. Then, th~ partial fraction expansion for H(s) 

is given by: 

H(s} 

Now let m - 1 = n, then 

yyo/ ' 

pm 1 
=- +--lt\SJ q_ q,s 

w. .1. 

Comparison of Eqs. (9) and (4} 

~ 
E =- Tlo = 

0 Pm 

.., I(\ \ 

and E. 
"j, '"'j' 

l 
~ ~ J p{A.j) •w j 

which then yields 

r 
j=1 

n 

"' + /. 6 

j=l 

yields 

ql; Tlj 

1 p(A.j) 
s - A q I (A. ) 

j j 

p(A.1) l u 

- A. .. q'(A.j) 
J 

q I (A..~) 
J = 

p(A.j) 

(8) 

(9) 

(10) 

(11) 

These equations relate the values of the model constants to the material 

constants in the stress-strain law. For.a real mechanical system, Ej and Tlj 

are real positive constants (or zero). Therefore, the A.i are real and 
u 

negative. This is a property of the transfer function; H(s)~ As a direct 
result of the electrical network analogy,( 4), (7), (S), (9) the following are 

the properties of the system transfer function, H(s} for the generalized Voigt 

model: 

(1) all zeros and poles of H(s) occur on the negative axis of reals. 

(2) all zeros and poles are simple, and are interlaced in the pattern ••• 

pole-zero-pole-zero- ••• 

(3) the highest critical frequency of H(s) is a zero; H(oo) is a 

positive real number. 

{4) the lowest critical frequency of H(s) is a pole which occurs at 

the origin, s = 0; H(O) =co. 
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A semi-anal~ical method of determining the generalized Voigt model which 
represents the d~c mechanical properties of a linear viscoelastic material 
over a range of frequencies of three decades is presented. This model 
representation is shown to be equivalent to the differential operator formulation 
of the linear viscoelastic stress-strain law. The method is applied to complex 
creep compliance data for N.B.S. po~sobutylene at 22 different temperatures. 
In general, the compliances calculated from the models differ from the 
experimental data by less than 5~. 

A summary of spring-dashpot model theory is presented in Appendix A. The 
equivalence of the differential operator stress-strain relation and the 
generalized Voigt model is demonstrated in Appendix B. 
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A semi-analytical method of determining the generalized Voigt model which 
irepresents the dynamic mechanical properties of a linear viscoelastic material 
;over a range of frequencies of three decades is presented. This model 
1 

representation is shown to be equivalent to the differential operator formulation 
of the linear viscoelastic stress-strain lav. The method is applied to complex 

1

creep compliance data for N.B.S. polyisobutylene at 22 different temperatures. 
1 In general, the compliances calculated from the models differ from the 
1 experiment8l data by less than 5i. 

A summary of spring-da.shpot model theory is presented in Appendix A. The 
equivalence of the differential operator stress-strain relation and the 
generalized Voigt model is demonstrated in Appendix B. 




